a2 United States Patent

Li et al.

US009419884B1

US 9,419,884 B1
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

INTELLIGENT AUTOMATED TESTING
METHOD FOR RESTFUL WEB SERVICES

Applicants: Ye Li, Beijing (CN); Ning Fu, Beijing
(CN); Bin Wang, Beijing (CN);
Xiaoming Gao, Beijing (CN)

Inventors: Ye Li, Beijing (CN); Ning Fu, Beijing
(CN); Bin Wang, Beijing (CN);
Xiaoming Gao, Beijing (CN)

Assignee: EMC Corporation, Hopkinton, MA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 596 days.

Appl. No.: 13/730,261

Filed: Dec. 28, 2012

Int. Cl.

HO4L 1226 (2006.01)

HO04L 29/06 (2006.01)

U.S. CL

CPCcccue. HO4L 43/50 (2013.01); HO4L 12/2697

(2013.01); HO4L 63/12 (2013.01)

Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

210

Test Case
Description

Operation
and tester
input data

Resource
Object
Processor

Mapping
Rule
Parser

Mapping
Rules

Resource
Object
Template

Metadata
Parser

Resource
Object
Metadata

Mapping Rule
Definition

~ 214

HTTP
Request

(56) References Cited

U.S. PATENT DOCUMENTS

8,745,641 Bl1* 6/2014 Cokerccceernn. 719/328
2010/0131928 Al* 5/2010 Parthasarathy et al. 717/126
2011/0264961 Al* 10/2011 Hongccceeevvvnnnne. 714/38.1
2014/0075242 Al1* 3/2014 Dolininaetal. 714/27

OTHER PUBLICATIONS

“Javascript Tutorial”. javascript.info. Dec. 3, 2011. http://web.
archive.org/web/20111203171824/http://javascript.info/tutorial/ob-
jects.*

* cited by examiner

Primary Examiner — Chris Parry
Assistant Examiner — Caroline Jahnige
(74) Attorney, Agent, or Firm — Barry N. Young

(57) ABSTRACT

A generalized testing framework for testing a RESTful web
service defines test cases that described RESTful operations
on resource object and associated data in configuration files
generates HT'TP requests to the web service based upon a test
case and receives corresponding responses, creates expected
responses, and filters fields of interest from the actual and
expected responses, and compares the filtered responses to
determine whether they match. Expected responses are auto-
matically created during runtime by mapping input data and
RESTful API operations to a resource object based upon the
test case, avoiding the necessity of predicting responses in
advance. Test cases may be readily changed or adapted to
different Restful web services by changing configuration
files.

20 Claims, 2 Drawing Sheets

SUT
RESTHuI
Web Service

HTTP
Response

Actual 206
Response \
Resource 256 Vo 202
. Expected o1p
Response 530
Resource
Assertion Ass_zrltfljon
Field b f'l .
Filter : efinition
262
260 Filtered Filtered :
Expected Actual :
Response Response | | 270
Resource Resource | |
232 : Test
Result ; Result
Assertor (Pass
-~ or Fail
N 200

U.S. Patent Aug. 16, 2016 Sheet 1 of 2 US 9,419,884 B1

m
2
_ a
R T
/m&m
o) wn
o Lol
— o
¢
o =
— 0]
| -
>
.20
L
I_
=
[WH]
|
/ =
~
o
i

US 9,419,884 B1

Sheet 2 of 2

Aug. 16, 2016

U.S. Patent

(Ire4 1o
ssed)

nsay
1saL

N

0/¢

uoniula(

Pl
UoILIaSSY

¢le

N4 1S3
1ns

N

:
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
|
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
I
]
]
]
[}

90IAIBS QoM

Z 91n314

91¢

uoniuisg
a|ny Buiddep

82.n0say
101J95SY 7 [oredwar J1osIed RN
nsay i 108[00 BI1EpPEIdA IR
cte “ 80In0say P _ i
i / i “
82.inosay 90Inosay i 9/2 cre L
asuodsay asuodsay ! “ “
[enoy pajoadxg / " 8seqeled P
pasalld poJal|i4 092 i [Bo0 I
\ i b
i > .
1814 _ 105590014 lesied B
ol I sa|Iny i
pIsi4 10900 Buiddep a|ny |
uolassy 92.N059Y ’ Buiddey
II\ “
N 22Inosay v/e o
0€e asuodsay 10]eJI3UID Jnsay paloadxy \.\ i
_UGHOGQXM FE SO S ./\/. m
N i
ved —~ v |
962 20In0say Blep ndul Jasled
™~ osuodsay 191891 pue ase) /
[enoy uonelsdo 1591
IIII wNN @NN \\\
cSe /_ asuodsay
N bou uonduasaqg
dllH }son
| ﬁ L 062 ase) 159 012

US 9,419,884 B1

1
INTELLIGENT AUTOMATED TESTING
METHOD FOR RESTFUL WEB SERVICES

BACKGROUND

This invention relates generally to testing frameworks for
software products such as web services, and more particularly
to a flexible generalized testing framework for testing differ-
ent web service functionality.

Proper testing of products such as web services to verify
functionality requires the generation of many different test
cases with appropriate input parameters and expected
responses that can be compared to actual responses. To test a
web service, for example, testers must send out a large num-
ber of different HTTP requests, receive responses, and com-
pare the actual received responses with the expected response
for each request. Each test case generally must be defined in
a programming language with a set of input parameters to
cause an HTTP client to send out a request that invokes a
desired response. Testing of web service software products
using traditional testing approaches generally requires hard
coding of expected results into each test assertion. This makes
revising test cases, composing new test cases or applying a
given test case to a new system under test a complex, time
consuming and labor intensive task. Frequently, predicting
expected results is difficult or impossible. Since most
expected values in responses are dependent upon the input
parameters sent with the request, generating expected
responses typically requires a mapping of input parameters
and operations to test responses. This effectively hard codes
test cases, requiring them to be redone to change the test
cases. For many operations, values assigned by the system
under test while processing a test case cannot be predicted.
Thus, although there are testing frameworks available that
enable one to create large numbers of test cases, their utility is
limited. They are generally unable to provide expected results
for each test case. As a result, a testing framework must be
hard coded and static, and specific to a particular software
product. Any change in the product requires a change in the
testing framework. This makes a general testing framework
for web service products infeasible since expected responses
depend upon many variables, some of which may be unpre-
dictable or unknown in advance of runtime. Accordingly,
designing testing frameworks even for products having lim-
ited functionality is a difficult and a complex task.

Testing using general purpose simulators to simulate
expected responses of software products to a plurality of
general test cases is also generally infeasible for the same
reasons discussed above. Furthermore, simulators tend to be
complex, must be designed and constructed for particular test
cases, and cannot be changed easily. Accordingly, they lack
flexibility and are not useful for testing the full range of
functionality of most web service products.

It is desirable to provide a general testing framework for
web services that addresses the foregoing and other problems
of know testing frameworks, and it is to these ends that the
present invention is directed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic view of a client-server web ser-
vice environment of the type with which the invention may be
employed; and

FIG. 2 is a diagrammatic view of the architecture of an
intelligent automated testing framework in accordance with
the invention for testing a RESTful web service.

10

40

45

55

2

DESCRIPTION OF PREFERRED
EMBODIMENTS

The invention is particularly well adapted to testing prod-
ucts such as web services based upon the REST architecture,
and will be described in that context. As will become evident,
however, this is illustrative of only one utility of the invention,
and the invention may find applicability with other types of
products having a REST or other architectures.

The well-known Representational State Transfer (REST)
architecture is an architectural style for network software
products such as distributed hypermedia client-server sys-
tems that utilize technologies and protocols of the World
Wide Web. REST describes how distributed data objects (re-
sources) are defined, addressed and transferred over HTTP.
RESTful web services based upon the REST architecture are
a simpler alternative to standard SOAP and WSDL based
interfaces. The REST architecture advantageously provides a
uniform interface between components, and requests from a
client to a server contain all the information necessary to
understand the request without the necessity for access to any
stored context on the server or prior requests. REST supports
only four types of operations: POST (create), GET (read or
retrieve a resource), PUT (update a resource), and DELETE
(delete a resource). REST uses HTTP methods explicitly, and
establishes a mapping between the four supported operations
and HTTP methods. RESTful web services are a simplified
way of publishing information and making processes avail-
able to others so they may interact with the information.
REST permits a standard web browser to access any applica-
tion or data resource. As such, REST is widely used for web
services, and is the type of architecture with which the intel-
ligent automated testing framework of the invention may be
used.

FIG. 1illustrates a client-server RESTful web service envi-
ronment of the type with which the testing framework inven-
tion may be employed. One or more clients 102 may be
interfaced via a network such as the World Wide Web 104 to
a server system under test (SUT) comprising a RESTful web
service 106. Client 102 may comprise a conventional com-
puter system comprising standard components (not illus-
trated) such as a CPU, input/out devices, memory, a network
interface and non-transitory physical computer readable
media embodying executable instructions for controlling the
operation of the CPU. The computer readable media may
embody an HTTP client program to enable the client to com-
municate with the web service 106. In a well known way,
client 102 may send HTTP requests architected using REST
principles to the RESTful web service 106, and receive HTTP
responses to the requests from the RESTful web service via
the web 104. The RESTful web service may also comprise a
computer system having control programs that afford a web
service that includes RESTful APIs designed in accordance
with REST principles as a resource oriented model in which
every resource is represented as a collection. Each RESTful
API corresponds to an operation applied to a set of resource
objects, and a RESTful response API represents either the
status of an operation or detailed information about the
response object. As will be described, Web Application
Description Language (WADL) files are preferably used to
describe APIs. Client 102 may function as a tester, and
embody a testing framework for testing the RESTful web
service 106. In order to test the RESTful web service, the
tester (client 102) needs to send a plurality of HTTP requests
to the web service, receive responses from the web service,
and compare the actual received responses with expected
responses to determine whether they match. In previously

US 9,419,884 B1

3

known testing frameworks this required an operator to gen-
erate each test case in a programming language, generate
corresponding expected responses, and to indicate the
expected values for the response based upon input param-
eters. As previously described, this was complex, labor inten-
sive and time-consuming, and made it difficult to change tests
readily or to adapt a test case constructed for one web service
to a different web service.

As will be described, an intelligent testing framework in
accordance with the invention avoids these difficulties by
providing a generalized RESTful testing framework on client
102 that enables a test configuration to be easily changed by
changing configuration files and that automatically generates
expected responses for a test case at run time based upon
operations and input data. This enables test cases that previ-
ously were infeasible because of the difficulty on impossibil-
ity of predicting responses, avoids the burden of manually
generating expected response details in advance, and permits
changes to be easily made to a test case or for different
services under test.

The testing framework in accordance with the invention is
a generalized one. As will be described, it affords agile test
case authoring, and centralized assertion logic to enable func-
tional changes of a RESTful web service to be readily handled
by simply changing mapping and assertion rules instead of
changing test scripts. It separates test scenarios from expected
results by providing configuration files that describe test
cases and their input data and the mappings of APIs to test
parameters. More importantly, however, it automatically gen-
erates expected results for each test case at run time while the
test case is processing. These result in a generalized testing
framework in which test cases are easily changed. Moreover,
the testing framework preferably uses Web Application Defi-
nition Language (WADL) or similar text based languages to
define operating process APIs and test cases. WADL may be
used to describe the URL, HTTP METHOD, and parameters
of'each HTTP request. In addition to enabling test cases to be
easily authored and changed, the testing framework enable
testers to use alias reference identifications (ids) as substitutes
for the real ids, of resource objects, for instance. Since a
resource object’s real id is randomly assigned during run
time, its value is not known in advance and is unpredictable.
Since the resource object’s real id will be used in URL or
query/form parameters, this requires a testing framework that
can either determine or generate real ids during testing in
order to generate an expected response. Once real ids are
created during processing, they may be recorded in a local
database in the client and mapped to corresponding alias ids
at run time. This enables generalized test cases to be created
and automatically updated at run time with the appropriate
real parameters as they are used.

As previously described, a RESTful web service supports
only four types of operations. Each RESTful API can be
considered an operation in which any of the four types of
operations may be applied to a set of resource objects. The
response of the RESTful API represents either the status of an
operation or provides detailed information about a resource
object. The APIs are preferably defined as WADL files, as
previously described. This is advantageous in that even
though the URL or operation type of an API is changed, it is
unnecessary to change the test cases. It is only necessary to
change the WADL files, which is readily done in well known
ways. Hach target object operated on by an API has a resource
object entity type, and each entity type is defined by metadata.
An input map comprising a Java Script Object Notation
(JSON) file provides a mapping between a user’s (tester’s)
input parameters and a resource object. Changing the input

20

25

40

45

4

map in mapping rules between input parameters and entity
types in the configuration files, changes mappings for each
API. For instance, every input map element may have four
fields: field name, field type, relation, and parameter or field
value. The framework will automatically generate the
expected responses based upon the mappings and input
parameters. This enables the status and detailed information
about all resource objects created by a tester to be recorded
and used by the testing framework.

FIG. 2 is a diagrammatic view of the architecture of a
preferred embodiment of a client system 200 embodying an
intelligent automated generalized testing framework 202 in
accordance with the invention for testing a RESTful web
service 206. The testing framework 202 may receive inputs
from four JSON configuration files: a test case description file
210, an assertions field definition file 212, a mapping rule
definition file 214, and a resource metadata file 216. These
configuration files that establish the test scenarios, param-
eters, operations and API mappings for the tests that are
performed. Preferably the files are constructed using standard
xml statements. As will be described, the testing framework
of the invention is a generalized testing framework in that it
enables tests to be readily changed as desired to test different
functionalities or different RESTful web services by chang-
ing the configuration text files. This avoids the burden of
changing hard coded test cases for different test parameters or
servers, as has been necessary previously.

The test case description file 210 may contain a description
or specification of one or more test cases to be applied to the
RESTful web service system under test (SUT) 206. This is
preferable done using WADL to describe the URL, HTTP
METHOD and parameters of each HTTP request of each test
case. This affords atest case definition schema that allows test
case scenarios to be separated from result assertion. Each test
case generally comprises one or more steps; and each has at
least two component parts. The first component part com-
prises one or more HTTP requests corresponding to opera-
tions of the web service 206; and the second component part
comprises the input data to be used by each operation. Each
response from the web service will be one or more resource
objects, and each resource object may comprise a plurality of
different properties, e.g., fields. Normally, for a particular
operation not all of the properties are of interest. The assertion
field definition file 212 specifies which of the fields are of
interest and should be considered, and which can be ignored.
The mapping rule definition file 214 is a JSON file that speci-
fies how the input data is to be applied to the resource objects
stored in a testing framework local database 220. The
resource object metadata file 216 is a JSON file that indicates
the properties which a particular resource object has. Since
only some of the properties of an actual resource object are of
interest, the metadata may be a subset of a property list of an
actual response object.

The testing framework may also include a number of dif-
ferent component processes in the form of executable pro-
grams comprising executable instructions embodied in physi-
cal computer readable media for controlling the client CPU.
The component processes may comprise a test case parser
224, an HTTP client 228, an assertion field filter 230, a result
assertor 232, and an expected result generator 234. The
expected result generator process 234 contains sub-pro-
cesses, which may include a mapping rule parser 240, a
metadata parser 242, and a resource object processor 246.

The test case parser component process 224 receives test
case descriptions from test case description text file 210,
extracts steps from the test cases, and then extracts operation
and tester input data 226 from the extracted steps. This

US 9,419,884 B1

5

extracted data is provided to both the HTTP client 228 and to
the resource object processor 246 of the expected result gen-
erator 234. The HTTP client 228 receives the operation and
input data from the test case parser and generates correspond-
ing HTTP requests 250 which it sends to the RESTful web
service system under test 206. The HTTP client receives
actual responses 252 to the requests from the web service 206
and supplies them as actual response resources 256 to the
assertion field filter 230.

The assertion field filter process 230 performs two princi-
pal functions. It uses assertion field definitions from the asser-
tion field definition file 212 to filter out fields that are not of
interest in expected and actual response resource objects, and
extracts a subset of the fields in response objects that are of
interest. The assertion field filter provides filtered expected
response resource objects 260 and filtered actual response
resource objects 262 to the result assertor process 232. The
result assertor process compares the expected and actual
response resource objects, and outputs at 270 the test results
of'the comparison as a pass if the results match or a fail if they
do not match.

The expected result generator 234 is a key component of
the testing framework 202. It simulates the web service SUT.
Ituses the web application description language (WADL) that
describes RESTful web service test cases and abstracts ser-
vice processes that are tested preferably by URL, HTTP
process and applicable parameters. It automatically creates
expected response resource objects 272 for test steps during
run time based upon the operation and testing input data 226,
mapping rules 274 provided by the mapping rule parser pro-
cess 240, and a resource object template 276 provided by the
metadata parser process 242. The resource object processor
246 of the expected results generator 234 receives the same
operation and tester input data as the HT'TP client, and uses
them to generate expected responses automatically during
run time by applying mapping rules to resource object meta-
data and test step operation and tester input data. The resource
object processor further stores resource objects and updates
the resource objects that are changed. The generated expected
response resource objects 272 from the resource object pro-
cessor are provided to the assertion field filter 230 and stored
inthe local database 220. The local database 220 is preferably
an in-memory database in the client computer system.

The mapping rules parser process 240 parses the JSON
mapping rule definition file 214, extracts mapping rules 274,
and provides them to the resource object processor 246. The
metadata parser process 242 parses the JSON resource object
metadata file 216, and extracts metadata for each kind of
resource object to create resource object templates 276. The
resource object templates are used by the resource object
processor 246 to create resource objects by mapping input
data into the resource templates.

The operation data provided by operation and tester input
data 226 to the resource object processor and to the HTTP
client indicates the kind of operations to be performed on the
web service SUT. Operations comprise different parts. A first
is a database manipulation, and a second part is manipulation
of a keyword of a resource object. In accordance with the
REST principles, there are only four possible manipulations:
post (create), update, read and delete. For each of the four
possible manipulations, the resource object processor may
perform the following operations with respect to database
records.

For the create operations, the resource object processor
will create an empty resource object based upon a resource
template 276, and apply mapping rules 274 to the tester input
data 226 to set values of the corresponding properties of the

10

15

20

25

30

35

40

45

50

55

60

65

6

resource object. It will store the resource object in the local
database 220 with a keyword provided in the input data 226,
and produce a corresponding expected response resource
object 272.

For the update operation, the resource object processor will
get a target resource object from the local database 220 based
on a resource object keyword provided in the tester input data
226; update the resource object by apply mapping rules 274 to
the tester input data to set values of the corresponding prop-
erties of the resource object; and restore the updated resource
object into the local database. The updated resource object
will comprise the expected response resource object 272.

For the read operation, the resource object processor will
get one or more target resource objects from the local data-
base 220 based upon resource object keywords provided in
the tester input data 226, and provide the resource objects as
expected responses to the expected response resource object
272.

For the delete operation, the resource object processor will
delete a target resource object of the local database 220 based
upon a keyword provided in the tester input data 226; generate
a response to indicate whether the delete operation suc-
ceeded, and provide the response as the expected result to the
expected response resource object 272. As previously noted,
the local database 220 may comprise in-memory local storage
for storing, among other things, data, the various control
programs (processes) of the testing framework 202, and the
various resources generated by the resource object processor.

As an example, consider the following test case that has
two steps. It creates a new user name “julia”, and changes
Julia’s password from “123” to “111”. When the test case is
run, the testing framework will do the following. In the first
test step (Test Step 1) the test case parser 224 will parse the
test case for the operation and input data; and in the second
step (Test Step 2) it will extract two instances of operations
(manipulations) and input data:

Test Set 1:
Operation Manipulation Create
Resource object julia@@User
keyword
Tester Input Data Field Value
Id: julia
First Name: Julia
Last Name: Li
Password: 123
Company: ABC
Email address: ye.li@abc.com
Test Step 2:
Operation Manipulation Update
Resource object julia@@User
keyword
Tester Input Data New password: 111

The test case parser 224 will send the results of Test Step 1
to the expected result generator 234 and to the HTTP client
228. The HTTP client will generate an HTTP request 250 to
create a user on the RESTful Web service SUT 206, send the
request to the SUT, and received a response 252 to the request
from the SUT. The HTTP client will parse the actual response
resource object 256 from the response 252 and pass it to the
assertion field filter 230. The assertion field filter will parse
the actual response resource object 256 to extract the fields of

US 9,419,884 B1

7

interest, i.e., the “id” and “email” fields, and pass the filtered
actual response resource object 262 to the results assertor
232.

Simultaneously with these foregoing steps, the resource
object processor 246 will create an empty user resource
object based upon a template 276 provided by the metadata
parser 242, and apply mapping rules 274 from mapping rules
parser 242 to the operation and tester input data 226 to set
values for the corresponding fields of the empty resource
object. The “id”, “first name”, “last name”, “password”,
“company”, “email”, etc., values may be input into the empty
resource object. Next, the resource object processor 246
stores the newly created resource object in the local database
220, and also passes the newly created resource object to the
assertion field filter 230 as an expected response resource
object 272. The assertion filter filters out fields that are not of
interest from the expected response resource object, and
passes the filtered expected response resource object 260 to
the results assertor 232. In the present example the “id” and
“email” fields are of interest and are retained in the filtered
response resource object passed to the results assertor. The
other fields are not of interest and are removed by the asser-
tion field filter.

Next, the results assertor 232 compares the filtered
expected and actual response resource objects 260, 262 to
determine whether they match. If they do not match, the test
case fails and the failure is indicated at 270. Otherwise, if the
expected and actual response resource objects match, a pass
indication is supplied at 270 and the testing process continues
to a Test Step 2 to complete the testing.

In Test Step 2, the testing framework performs a new series
of actions to update Julia’s password. The HTTP client 228
composes an HTTP request 250 to reset the password of the
user “Julia” on the RESTful web service SUT 206, sends the
request to the SUT, and receives an HTTP response 252 to the
request. The HTTP client passes the received response as an
actual response resource object 256 to the assertion field filter
230. The assertion field filter filters the actual response
resource object remove all fields except the “id” and “pass-
word” fields. The resource object processor 246 retrieves the
stored user resource object from the local database using the
keyword “julia @@User”, updates (changes) the password
field of the “julia” resource stores the updated resource back
into the local database to overwrite the previously stored one,
and also passes the newly created resource object to the
assertion field filter 230 as an expected response resource
object 272. As described above, the result assertor compares
the expected response resource object and the actual response
resource object, and provides the result of the comparison as
test results at 270.

As will be appreciated from the foregoing example, test
cases having any numbers of test steps comprising operations
and parameters may be authored in WADL, and descriptions
of'the test cases stored as text files in the test case description
file 210. As will be further appreciated, test case descriptions
may be easily edited and changed by changing the WADL. file
and the test case description file of operations and parameters,
and updating or changing the JSON resource object metadata
and mapping rules definition configuration files. Accordingly,
the invention advantageously permits a large number and
variety of different tests to be constructed easily to test dif-
ferent aspects of a RESTful web service and different REST-
ful web services without the necessity of having to predict
expected responses to test requests. The testing framework
does this automatically during run time. Thus, the testing
framework of the invention is a generalized framework that

10

15

20

25

30

35

40

45

50

55

60

65

8

permits use of test cases that previously were not feasible,
thereby affording more complete testing of products.

While the foregoing has been with respect to preferred
embodiments of the invention, it will be appreciated that
changes to these embodiments may be made without depart-
ing from the principles of the spirit of the invention, the scope
of which is defined by the appended claims.

The invention claimed is:

1. A method of testing a RESTful web service using a
testing framework that includes a client, comprising:

defining a test case that describes a plurality of RESTful

operations on a resource object and associated input data
in a test case configuration file, the test case configura-
tion file comprising application program interfaces
(APIs) corresponding to one or more of said RESTful
operations on the resource object, associated input data
and mappings of API’s to test parameters of said test
case, the test case configuration file having an alias ref-
erence identification of said resource object in place of a
real identification that is randomly assigned to the
resource object during run time processing of said test
case;

providing the test case configuration file to a client and to

an expected result generator comprising a resource
object processor, the client automatically generating
testing requests to said web service at run time while said
test case is processing based upon said APIs, said asso-
ciated input data of said test case configuration file and
upon receiving in response to actual responses to said
testing requests received from said web service during
said run time processing, said automatically generating
comprising dynamically updating during run time said
alias reference identification in said test case configura-
tion file with said assigned real identification in response
to said actual responses;

automatically creating by the resource object processor

expected results generator, at run time while said test
case is processing, expected responses to the testing
requests based upon said APIs, said updated alias iden-
tification, and said associated input data and parameters
of said test case configuration file; and

comparing said actual received responses with said

expected responses.

2. The method of claim 1 further comprising creating said
resource object by said resource object processor by mapping
input data to aresource object template specified in aresource
object metadata file, there being a different resource object
template for different resource object types.

3. The method of claim 2, wherein resource objects have a
plurality of resource object fields, said resource object fields
being defined by metadata in said resource object metadata
file, and said mapping comprises applying mapping rules
from a mapping rule definition file to define parameters for
said resource object fields, and wherein said method further
comprises defining a new test case by changing said map-
pings of APIs to new test parameters of said new test case
without changing a test script.

4. The method of claim 3, wherein said mapping rules map
APIs to resource objects and map input data to said resource
object fields, and wherein said automatically creating
expected responses comprises applying an API to said
resource object and input data based upon said mapping.

5. The method of claim 3, wherein said test case configu-
ration file comprises a text file, and the method further com-
prising changing said test case applied to said web service by
changing said text file to define said new test case.

US 9,419,884 B1

9

6. The method of claim 5, wherein said changing said test
case further comprise changing said resource object metadata
file and said mapping rule definition file.

7. The method of claim 4, wherein said resource object
processor creates said resource object by creating and storing
an empty resource object in a memory, and mapping said
APIs and input data to said empty resource object.

8. The method of claim 7 further comprising simulating
said RESTful web service by said resource object processor,
and wherein said automatically creating expected responses
comprises applying said test case to said simulated RESTful
web service.

9. The method of claim 1, wherein said actual responses
and said expected responses respectively comprise actual and
expected response objects having a plurality of fields, and
wherein said method further comprises filtering out fields that
are not of interest from said actual and expected response
objects to provide filtered actual and expected response
objects, and said comparing comprises comparing said fil-
tered actual and expected response objects.

10. The method of claim 9, wherein said filtering comprises
applying to said filtering an assertion field definition that
defines fields of interest in said actual and expected response
objects.

11. A non-transitory computer readable medium embody-
ing executable instructions for controlling the operation of a
computer to provide a testing framework to test a RESTful
web service, the instructions controlling the computer to per-
form operations comprising:

defining a test case that describes a plurality of RESTful

operations on a resource object and associated input data
in a test case configuration file, the test case configura-
tion file comprising application program interfaces
(APIs) corresponding to one or more of said RESTful
operations on the resource object, associated input data
and mappings of API’s to test parameters of said test
case and associated input data, the test case configura-
tion file having an alias reference identification of said
resource object in place of a real identification that is
randomly assigned to the resource object during run
time processing of said test case;

providing the test case configuration file to a client and to

an expected result generator comprising a resource
object processor, the client automatically generating
testing requests to said web service at run time while said
test case is processing based upon said APIs, said asso-
ciated input data of said test case configuration file and
upon receiving in response to actual responses to said
testing requests received from said web service during
said run time processing, said automatically generating
comprising dynamically updating during run time said
alias reference identification in said test case configura-
tion file with said assigned real identification in response
to said actual responses;

automatically creating by the resource object expected

result generator, at run time while said test case is pro-
cessing, expected responses to the testing requests based

10

15

20

25

30

35

40

45

50

55

10

upon said APIs, said updated alias identification, and
said associated input data and parameters of said test
case configuration file; and

comparing said actual received responses with said

expected responses.

12. The computer readable medium of claim 11 further
comprising instructions for creating said resource object by
said resource object processor by mapping input data to a
resource object template specified in a resource object meta-
data file, there being a different resource object template for
different resource object types.

13. The computer readable medium of claim 12, wherein
resource objects have a plurality of resource object fields, said
resource object fields being defined by metadata in said
resource object metadata file, and said mapping comprises
applying mapping rules from a mapping rule definition file to
define parameters for said resource object fields, and wherein
the method further comprises defining a new test case by
changing said mappings of APIs to new test parameters of
said new test case without changing a test script.

14. The computer readable medium of claim 13, wherein
said mapping rules map APIs to resource objects and map
input data to said resource object fields, and wherein said
automatically creating expected responses comprises apply-
ing an API to said resource object and input data based upon
said mapping.

15. The computer readable medium of claim 13, wherein
said test case configuration file comprises a text file, and the
method further comprising changing said test case applied to
said web service by changing said text file to define said new
test case.

16. The computer readable media of claim 15, wherein
changing said test case further comprises changing said
resource object metadata file and said mapping rule definition
file.

17. The computer readable medium of claim 14, wherein
said resource object processor creates said resource object by
creating and storing an empty resource object in a memory,
and mapping said APIs and input data to said empty resource
object.

18. The computer readable medium of claim 17 further
comprising simulating said RESTful web service by said
resource object processor, and wherein said automatically
creating expected responses comprises applying said test case
to said simulated RESTful web service.

19. The computer readable medium of claim 11, wherein
said actual responses and said expected responses respec-
tively comprise actual and expected response objects having
a plurality of fields, and wherein said method further com-
prises filtering out fields that are not of interest from said
actual and expected response objects to provide filtered actual
and expected response objects, and said comparing comprises
comparing said filtered actual and expected response objects.

20. The computer readable medium of claim 19, wherein
said filtering comprises applying to said filtering an assertion
field definition that defines fields of interest in said actual and
expected response objects.

#* #* #* #* #*

